Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Insert excerpt

...

TensorFlow

...

TensorFlow

...

name

...

titleTensorflow module has known issues

WarningAfterJune2024
nopaneltrue

.

Column


Note

This page is still a work in progress and support for Machine Learning workload has just started. Please check it frequently for updates.


...

Pawsey TensorFlow container image is publicly distributed on quay.io (external site). We recommend to use a local installation of Docker in your own desktop to build your container on top of Pawsey's TensorFlow image starting your Dockerfile with the commandline:

FROM quay.io/pawsey/tensorflow:2.12.1.570-rocm5.6.0

To pull the image to your local desktop with Docker you can use:

$ docker pull quay.io/pawsey/tensorflow:2.12.1.570-rocm5.6.0

To know more about our recommendations of container builds with Docker and later translation into Singularity format for their use in Setonix please refer to the Containers Documentation.

...

Column
width900px


Code Block
languagebash
themeEmacs
titleListing 1. runTensorflow.sh : An example batch script to run a TensorFlow distributed training job.
#!/bin/bash --login
#SBATCH --job-name=distributedtensorflow_tfmultiGPU
#SBATCH --partition=gpu
#SBATCH --nodes=2              #2 nodes in this example 
#SBATCH --exclusive            #All resources of the node are exclusive to this job
#                              #8 GPUs per node (16 "allocation packs" in total for the job)
#SBATCH --time=00:05:00
#SBATCH --account=pawsey12345-gpu #IMPORTANT: use your own project and the -gpu suffix

#----
#Loading needed modules:
module export ROCM_PATH=/opt/rocm #Workaround for path errors with new CPE. Will be removed after container fix.
module load tensorflow/<version>
load tensorflow/<version> #Adapt this line for the correct version
echo -e "\n\n#------------------------#"
module list

#----
#Printing the status of the given allocation
echo -e "\n\n#------------------------#"
echo "Printing from scontrol:"
scontrol show job ${SLURM_JOBID}

#----
#If additional python packages have been installed in user's own virtual environment
VENV_PATH=$MYSOFTWARE/manual/software/pythonEnvironments/tensorflowContainer-environments/myenv

#----
#Clear#Definition definition of the python script containing the tensorflow training case
PYTHON_SCRIPT_DIR=$MYSRATCH$MYSCRATCH/matilda-machinelearning/models/01_horovod_mnist
PYTHON_SCRIPT=$PYTHON_SCRIPT_DIR/00_myTensorflowScript.py

#----
#TensorFlow settings if needed:
#  The following two variables control the real number of threads in Tensorflow code:
export TF_NUM_INTEROP_THREADS=1    #Number of threads for independent operations
export TF_NUM_INTRAOP_THREADS=1    #Number of threads within individual operations 

#----
#Execution
#Note: srun needs the explicit indication full parameters for use of resources in the job step.
#      These are independent from the allocation parameters (which are not inherited by srun)
#      Each task needs access to all the 8 available GPUs in the node where it's running.
#      So, no optimal binding can be provided by the scheduler.
#      Therefore, "--gpus-per-task" and "--gpu-bind" are not used.
#      Optimal use of resources is now responsability of the code.
#      "-c 8" is used to force allocation of 1 task per CPU chiplet. Then, the REAL number of threads
#         for the code SHOULD be defined by the environment variables above.
echo -e "\n\n#------------------------#"
echo "Code execution:"
#When no usingvirtual aenvironement virtualis environmentneeded:
srun -N 2 -n 16 -c 8 --gres=gpu:8 bash -c "source $VENV_PATH/bin/activate && python3 $PYTHON_SCRIPT"
#When nousing a virtual environement is neededenvironment:
#srun -N 2 -n 16 -c 8 --gres=gpu:8 bash -c "source $VENV_PATH/bin/activate && python3 $PYTHON_SCRIPT"

#----
#Printing information of finished job steps:
echo -e "\n\n#------------------------#"
echo "Printing information of finished jobs steps using sacct:"
sacct -j ${SLURM_JOBID} -o jobid%20,Start%20,elapsed%20

#----
#Done
echo -e "\n\n#------------------------#"
echo "Done"


Here, the training distribution takes place on 16 GPUS (8 GPUs per node). Note the use of the TensorFlow environment variables TF_NUM_INTEROP_THREADS and TF_NUM_INTRAOP_THREADS to control the real number of threads to be used by the code (we recommend to leave them as 1). (Note that the resource request for GPU nodes is different from the usual Slurm allocation requests and also the parameters to be given to the srun command. Please refer to the page Example Slurm Batch Scripts for Setonix on GPU Compute Nodes for a detailed explanation of resource allocation on GPU nodes).

...